Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Enhancement of production of eugenol and its glycosides in transgenic aspen plants via genetic engineering.

Identifieur interne : 002703 ( Main/Exploration ); précédent : 002702; suivant : 002704

Enhancement of production of eugenol and its glycosides in transgenic aspen plants via genetic engineering.

Auteurs : Takao Koeduka [Japon] ; Shiro Suzuki ; Yoko Iijima ; Toshiyuki Ohnishi ; Hideyuki Suzuki ; Bunta Watanabe ; Daisuke Shibata ; Toshiaki Umezawa ; Eran Pichersky ; Jun Hiratake

Source :

RBID : pubmed:23707945

Descripteurs français

English descriptors

Abstract

Eugenol, a volatile phenylpropene found in many plant species, exhibits antibacterial and acaricidal activities. This study attempted to modify the production of eugenol and its glycosides by introducing petunia coniferyl alcohol acetyltransferase (PhCFAT) and eugenol synthase (PhEGS) into hybrid aspen. Gas chromatography analyses revealed that wild-type hybrid aspen produced small amount of eugenol in leaves. The heterologous overexpression of PhCFAT alone resulted in up to 7-fold higher eugenol levels and up to 22-fold eugenol glycoside levels in leaves of transgenic aspen plants. The overexpression of PhEGS alone resulted in a subtle increase in either eugenol or eugenol glycosides, and the overexpression of both PhCFAT and PhEGS resulted in significant increases in the levels of both eugenol and eugenol glycosides which were nonetheless lower than the increases seen with overexpression of PhCFAT alone. On the other hand, overexpression of PhCFAT in transgenic Arabidopsis and tobacco did not cause any synthesis of eugenol. These results indicate that aspen leaves, but not Arabidopsis and tobacco leaves, have a partially active pathway to eugenol that is limited by the level of CFAT activity and thus the flux of this pathway can be increased by the introduction of a single heterologous gene.

DOI: 10.1016/j.bbrc.2013.05.060
PubMed: 23707945


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Enhancement of production of eugenol and its glycosides in transgenic aspen plants via genetic engineering.</title>
<author>
<name sortKey="Koeduka, Takao" sort="Koeduka, Takao" uniqKey="Koeduka T" first="Takao" last="Koeduka">Takao Koeduka</name>
<affiliation wicri:level="4">
<nlm:affiliation>Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan. takaori@scl.kyoto-u.ac.jp</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011</wicri:regionArea>
<orgName type="university">Université de Kyoto</orgName>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Suzuki, Shiro" sort="Suzuki, Shiro" uniqKey="Suzuki S" first="Shiro" last="Suzuki">Shiro Suzuki</name>
</author>
<author>
<name sortKey="Iijima, Yoko" sort="Iijima, Yoko" uniqKey="Iijima Y" first="Yoko" last="Iijima">Yoko Iijima</name>
</author>
<author>
<name sortKey="Ohnishi, Toshiyuki" sort="Ohnishi, Toshiyuki" uniqKey="Ohnishi T" first="Toshiyuki" last="Ohnishi">Toshiyuki Ohnishi</name>
</author>
<author>
<name sortKey="Suzuki, Hideyuki" sort="Suzuki, Hideyuki" uniqKey="Suzuki H" first="Hideyuki" last="Suzuki">Hideyuki Suzuki</name>
</author>
<author>
<name sortKey="Watanabe, Bunta" sort="Watanabe, Bunta" uniqKey="Watanabe B" first="Bunta" last="Watanabe">Bunta Watanabe</name>
</author>
<author>
<name sortKey="Shibata, Daisuke" sort="Shibata, Daisuke" uniqKey="Shibata D" first="Daisuke" last="Shibata">Daisuke Shibata</name>
</author>
<author>
<name sortKey="Umezawa, Toshiaki" sort="Umezawa, Toshiaki" uniqKey="Umezawa T" first="Toshiaki" last="Umezawa">Toshiaki Umezawa</name>
</author>
<author>
<name sortKey="Pichersky, Eran" sort="Pichersky, Eran" uniqKey="Pichersky E" first="Eran" last="Pichersky">Eran Pichersky</name>
</author>
<author>
<name sortKey="Hiratake, Jun" sort="Hiratake, Jun" uniqKey="Hiratake J" first="Jun" last="Hiratake">Jun Hiratake</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23707945</idno>
<idno type="pmid">23707945</idno>
<idno type="doi">10.1016/j.bbrc.2013.05.060</idno>
<idno type="wicri:Area/Main/Corpus">002582</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002582</idno>
<idno type="wicri:Area/Main/Curation">002582</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002582</idno>
<idno type="wicri:Area/Main/Exploration">002582</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Enhancement of production of eugenol and its glycosides in transgenic aspen plants via genetic engineering.</title>
<author>
<name sortKey="Koeduka, Takao" sort="Koeduka, Takao" uniqKey="Koeduka T" first="Takao" last="Koeduka">Takao Koeduka</name>
<affiliation wicri:level="4">
<nlm:affiliation>Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan. takaori@scl.kyoto-u.ac.jp</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011</wicri:regionArea>
<orgName type="university">Université de Kyoto</orgName>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Suzuki, Shiro" sort="Suzuki, Shiro" uniqKey="Suzuki S" first="Shiro" last="Suzuki">Shiro Suzuki</name>
</author>
<author>
<name sortKey="Iijima, Yoko" sort="Iijima, Yoko" uniqKey="Iijima Y" first="Yoko" last="Iijima">Yoko Iijima</name>
</author>
<author>
<name sortKey="Ohnishi, Toshiyuki" sort="Ohnishi, Toshiyuki" uniqKey="Ohnishi T" first="Toshiyuki" last="Ohnishi">Toshiyuki Ohnishi</name>
</author>
<author>
<name sortKey="Suzuki, Hideyuki" sort="Suzuki, Hideyuki" uniqKey="Suzuki H" first="Hideyuki" last="Suzuki">Hideyuki Suzuki</name>
</author>
<author>
<name sortKey="Watanabe, Bunta" sort="Watanabe, Bunta" uniqKey="Watanabe B" first="Bunta" last="Watanabe">Bunta Watanabe</name>
</author>
<author>
<name sortKey="Shibata, Daisuke" sort="Shibata, Daisuke" uniqKey="Shibata D" first="Daisuke" last="Shibata">Daisuke Shibata</name>
</author>
<author>
<name sortKey="Umezawa, Toshiaki" sort="Umezawa, Toshiaki" uniqKey="Umezawa T" first="Toshiaki" last="Umezawa">Toshiaki Umezawa</name>
</author>
<author>
<name sortKey="Pichersky, Eran" sort="Pichersky, Eran" uniqKey="Pichersky E" first="Eran" last="Pichersky">Eran Pichersky</name>
</author>
<author>
<name sortKey="Hiratake, Jun" sort="Hiratake, Jun" uniqKey="Hiratake J" first="Jun" last="Hiratake">Jun Hiratake</name>
</author>
</analytic>
<series>
<title level="j">Biochemical and biophysical research communications</title>
<idno type="eISSN">1090-2104</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acetyltransferases (genetics)</term>
<term>Acetyltransferases (metabolism)</term>
<term>Alkenes (chemistry)</term>
<term>Chromatography, Gas (MeSH)</term>
<term>Eugenol (metabolism)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genetic Engineering (MeSH)</term>
<term>Glycosides (metabolism)</term>
<term>Oxidoreductases Acting on CH-CH Group Donors (genetics)</term>
<term>Oxidoreductases Acting on CH-CH Group Donors (metabolism)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Proteins (genetics)</term>
<term>Plants, Genetically Modified (metabolism)</term>
<term>Populus (metabolism)</term>
<term>Tandem Mass Spectrometry (MeSH)</term>
<term>Transgenes (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acetyltransferases (génétique)</term>
<term>Acetyltransferases (métabolisme)</term>
<term>Alcènes (composition chimique)</term>
<term>Chromatographie en phase gazeuse (MeSH)</term>
<term>Eugénol (métabolisme)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Génie génétique (MeSH)</term>
<term>Hétérosides (métabolisme)</term>
<term>Oxidoreductases acting on CH-CH group donors (génétique)</term>
<term>Oxidoreductases acting on CH-CH group donors (métabolisme)</term>
<term>Populus (métabolisme)</term>
<term>Protéines végétales (génétique)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Spectrométrie de masse en tandem (MeSH)</term>
<term>Transgènes (MeSH)</term>
<term>Végétaux génétiquement modifiés (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Alkenes</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Acetyltransferases</term>
<term>Oxidoreductases Acting on CH-CH Group Donors</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Acetyltransferases</term>
<term>Eugenol</term>
<term>Glycosides</term>
<term>Oxidoreductases Acting on CH-CH Group Donors</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Alcènes</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Acetyltransferases</term>
<term>Oxidoreductases acting on CH-CH group donors</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Leaves</term>
<term>Plants, Genetically Modified</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acetyltransferases</term>
<term>Eugénol</term>
<term>Feuilles de plante</term>
<term>Hétérosides</term>
<term>Oxidoreductases acting on CH-CH group donors</term>
<term>Populus</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Chromatography, Gas</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genetic Engineering</term>
<term>Tandem Mass Spectrometry</term>
<term>Transgenes</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Chromatographie en phase gazeuse</term>
<term>Génie génétique</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Spectrométrie de masse en tandem</term>
<term>Transgènes</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Eugenol, a volatile phenylpropene found in many plant species, exhibits antibacterial and acaricidal activities. This study attempted to modify the production of eugenol and its glycosides by introducing petunia coniferyl alcohol acetyltransferase (PhCFAT) and eugenol synthase (PhEGS) into hybrid aspen. Gas chromatography analyses revealed that wild-type hybrid aspen produced small amount of eugenol in leaves. The heterologous overexpression of PhCFAT alone resulted in up to 7-fold higher eugenol levels and up to 22-fold eugenol glycoside levels in leaves of transgenic aspen plants. The overexpression of PhEGS alone resulted in a subtle increase in either eugenol or eugenol glycosides, and the overexpression of both PhCFAT and PhEGS resulted in significant increases in the levels of both eugenol and eugenol glycosides which were nonetheless lower than the increases seen with overexpression of PhCFAT alone. On the other hand, overexpression of PhCFAT in transgenic Arabidopsis and tobacco did not cause any synthesis of eugenol. These results indicate that aspen leaves, but not Arabidopsis and tobacco leaves, have a partially active pathway to eugenol that is limited by the level of CFAT activity and thus the flux of this pathway can be increased by the introduction of a single heterologous gene.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23707945</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>08</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1090-2104</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>436</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2013</Year>
<Month>Jun</Month>
<Day>21</Day>
</PubDate>
</JournalIssue>
<Title>Biochemical and biophysical research communications</Title>
<ISOAbbreviation>Biochem Biophys Res Commun</ISOAbbreviation>
</Journal>
<ArticleTitle>Enhancement of production of eugenol and its glycosides in transgenic aspen plants via genetic engineering.</ArticleTitle>
<Pagination>
<MedlinePgn>73-8</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.bbrc.2013.05.060</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S0006-291X(13)00854-1</ELocationID>
<Abstract>
<AbstractText>Eugenol, a volatile phenylpropene found in many plant species, exhibits antibacterial and acaricidal activities. This study attempted to modify the production of eugenol and its glycosides by introducing petunia coniferyl alcohol acetyltransferase (PhCFAT) and eugenol synthase (PhEGS) into hybrid aspen. Gas chromatography analyses revealed that wild-type hybrid aspen produced small amount of eugenol in leaves. The heterologous overexpression of PhCFAT alone resulted in up to 7-fold higher eugenol levels and up to 22-fold eugenol glycoside levels in leaves of transgenic aspen plants. The overexpression of PhEGS alone resulted in a subtle increase in either eugenol or eugenol glycosides, and the overexpression of both PhCFAT and PhEGS resulted in significant increases in the levels of both eugenol and eugenol glycosides which were nonetheless lower than the increases seen with overexpression of PhCFAT alone. On the other hand, overexpression of PhCFAT in transgenic Arabidopsis and tobacco did not cause any synthesis of eugenol. These results indicate that aspen leaves, but not Arabidopsis and tobacco leaves, have a partially active pathway to eugenol that is limited by the level of CFAT activity and thus the flux of this pathway can be increased by the introduction of a single heterologous gene.</AbstractText>
<CopyrightInformation>Copyright © 2013 Elsevier Inc. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Koeduka</LastName>
<ForeName>Takao</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan. takaori@scl.kyoto-u.ac.jp</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Suzuki</LastName>
<ForeName>Shiro</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Iijima</LastName>
<ForeName>Yoko</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ohnishi</LastName>
<ForeName>Toshiyuki</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Suzuki</LastName>
<ForeName>Hideyuki</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Watanabe</LastName>
<ForeName>Bunta</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Shibata</LastName>
<ForeName>Daisuke</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Umezawa</LastName>
<ForeName>Toshiaki</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pichersky</LastName>
<ForeName>Eran</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hiratake</LastName>
<ForeName>Jun</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>05</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biochem Biophys Res Commun</MedlineTA>
<NlmUniqueID>0372516</NlmUniqueID>
<ISSNLinking>0006-291X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000475">Alkenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006027">Glycosides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3T8H1794QW</RegistryNumber>
<NameOfSubstance UI="D005054">Eugenol</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>AUG1H506LY</RegistryNumber>
<NameOfSubstance UI="C013658">propylene</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.3.-</RegistryNumber>
<NameOfSubstance UI="D044925">Oxidoreductases Acting on CH-CH Group Donors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.3.1.-</RegistryNumber>
<NameOfSubstance UI="D000123">Acetyltransferases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000123" MajorTopicYN="N">Acetyltransferases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000475" MajorTopicYN="N">Alkenes</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002849" MajorTopicYN="N">Chromatography, Gas</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005054" MajorTopicYN="N">Eugenol</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005818" MajorTopicYN="N">Genetic Engineering</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006027" MajorTopicYN="N">Glycosides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044925" MajorTopicYN="N">Oxidoreductases Acting on CH-CH Group Donors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053719" MajorTopicYN="N">Tandem Mass Spectrometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019076" MajorTopicYN="N">Transgenes</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>04</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>05</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>5</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>5</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>8</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23707945</ArticleId>
<ArticleId IdType="pii">S0006-291X(13)00854-1</ArticleId>
<ArticleId IdType="doi">10.1016/j.bbrc.2013.05.060</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
<region>
<li>Région du Kansai</li>
</region>
<settlement>
<li>Kyoto</li>
</settlement>
<orgName>
<li>Université de Kyoto</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Hiratake, Jun" sort="Hiratake, Jun" uniqKey="Hiratake J" first="Jun" last="Hiratake">Jun Hiratake</name>
<name sortKey="Iijima, Yoko" sort="Iijima, Yoko" uniqKey="Iijima Y" first="Yoko" last="Iijima">Yoko Iijima</name>
<name sortKey="Ohnishi, Toshiyuki" sort="Ohnishi, Toshiyuki" uniqKey="Ohnishi T" first="Toshiyuki" last="Ohnishi">Toshiyuki Ohnishi</name>
<name sortKey="Pichersky, Eran" sort="Pichersky, Eran" uniqKey="Pichersky E" first="Eran" last="Pichersky">Eran Pichersky</name>
<name sortKey="Shibata, Daisuke" sort="Shibata, Daisuke" uniqKey="Shibata D" first="Daisuke" last="Shibata">Daisuke Shibata</name>
<name sortKey="Suzuki, Hideyuki" sort="Suzuki, Hideyuki" uniqKey="Suzuki H" first="Hideyuki" last="Suzuki">Hideyuki Suzuki</name>
<name sortKey="Suzuki, Shiro" sort="Suzuki, Shiro" uniqKey="Suzuki S" first="Shiro" last="Suzuki">Shiro Suzuki</name>
<name sortKey="Umezawa, Toshiaki" sort="Umezawa, Toshiaki" uniqKey="Umezawa T" first="Toshiaki" last="Umezawa">Toshiaki Umezawa</name>
<name sortKey="Watanabe, Bunta" sort="Watanabe, Bunta" uniqKey="Watanabe B" first="Bunta" last="Watanabe">Bunta Watanabe</name>
</noCountry>
<country name="Japon">
<region name="Région du Kansai">
<name sortKey="Koeduka, Takao" sort="Koeduka, Takao" uniqKey="Koeduka T" first="Takao" last="Koeduka">Takao Koeduka</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002703 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002703 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23707945
   |texte=   Enhancement of production of eugenol and its glycosides in transgenic aspen plants via genetic engineering.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23707945" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020